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PROSPECTS FOR CFD ON PETAFLOPS SYSTEMS*

DAVID E. KEYES ?, DINESH K. KAUSHIK t, AND BARRY F. SMITH§

Abstract. With teraflops-scale computational modeling expected to be routine by 2003-04, under the

terms of the Accelerated Strategic Computing Initiative (ASCI) of the U.S. Department of Energy, and

with teraflops-capable platforms already available to a small group of users, attention naturally focuses

on the next symbolically important milestone, computing at rates of 1015 floating point operations per

second, or "petaflop/s". For architectural designs that are in any sense extrapolations of today's, petaflops-

scale computing will require approximately one-million-fold instruction-level concurrency. Given that cost-

effective one-thousand-fold concurrency is challenging in practical computational fluid dynamics simulations

today, algorithms are among the many possible bottlenecks to CFD on petaflops systems. After a general

outline of the problems and prospects of petaflops computing, we examine the issue of algorithms for PDE

computations in particular. A back-of-the-envelope parallel complexity analysis focuses on the latency of

global synchronization steps in the implicit algorithm. We argue that the latency of synchronization steps

is a fundamental, but addressable, challenge for PDE computations with static data structures, which are

primarily determined by grids. We provide recent results with encouraging scalability for parallel implicit

Euler simulations using the Newton-Krylov-Schwarz solver in the PETSc software library. The prospects for

PDE simulations with dynamically evolving data structures are far less clear.

Key words. Parallel scientific computing, computational fluid dynamics, petaflops architectures

Subject classification. Computer Science

1. Introduction. Future computing technology in general, and scientific computing technology in par-

ticular, will be characterized by highly parallel, hierarchical designs. This trend in design is a fairly straight-

forward consequence of two other trends: a desire to work with increasingly large data sets at increasing

speeds and the imperative of cost-effectiveness. A system possessing large memory without a correspond-

ingly large number of processors to act concurrently upon it is expensively out-of-balance. Fortunately, data

use in most real programs has sufficient temporal and spatial locality to allow a distributed and hierarchical

memory system, and this locality must be exploited at some level (by a combination of the applications

programmer at the algorithmic level, the system software at the compiler and runtime levels, and the hard-

ware). Research on petaflops 1 systems can be seen as paving the way for exploiting hierarchical parallelism

*This report updates with new data and additional perspective a similar contribution by the same authors to appear in CFD

Review 1997, M. Hafez, ed., Wiley, 1997.
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1 In order to distinguish the plural of "floating point operations" from the rate "floating point operations per second," the rate

is customarily abbreviated "flop/s', with an explicit "/" for the "per". We retain this distinction when quoting measurements,



at all levels. Indeed, "petaflops" has come to refer to body of research dealing with very highly parallel

computing, since petaflops computers are likely to have between 10a and 106 processors, with deep memory

hierarchies.

1.1. Petaflops Numerology. Casting petaflops-scale computing into popular terms is a worthwhile

exercise even for the quantitatively elite, if for no other reason than that this staggering (and staggeringly

expensive) capability must be explained to others. With apologies for drawing significance to any number

with an arbitrary dimension attached (i.e., the second) except for its mnemonic value, we note that main-

stream production scientific computing on workstations is carried out at approximately the square-root of

1 Pflop/s today: _ _ 31.5 × 106. The following commodity workstations perform the LINPACK-100

benchmark at a rate within a few percent of 31.5 Mfiop/s [11]:

• SGI Indigo2 (200 MHz)

• IBM RS 6000-560 (50 MHz)

• DEC 3000-500 Alpha AXP (150 MHz)

• Sun Sparc 20 (90 MHz)

A typical sparse PDE computation performs somewhat below the dense LINPACK-100 rates, but with

attention to cache residency through variable interleaving and subdomain blocking, it can come close.

There are also 31.5 × 106 seconds in a year, to within one-tenth of a percent. Therefore, a 1 Pflop/s

computer could compute in one second what one of these workstations can compute in one year.

There are also 31.5 × 10 6 people presently living in the state of California, to within a few percent, based

on an extrapolation from the 1990 federal census. Therefore, the processing power of a 1 Pflop/s computer

(but not the requisite connectivity[) could be realized if everyone in California pooled a commodity scientific

workstation to the task. This particular bit of numerology calls to mind that the electrical power consumption

of a 1 Pflop/s computer built from commercial, off-the-shelf (COTS) components would be impressive.

As a final point of perspective, we note that the human brain has approximately 1012 neurons capable

of firing at approximately 1 KHz, and is therefore a specialized peta-op/s "machine" weighing just three

pounds and requiring far less power.

1.2. Interagency Petaflops Workshops. Since February 1994, there has been a systematic effort

to explore the feasibility of and encourage the development of petafiops-scale computing by an informal

interdisciplinary, interagency working group, subsets of which have met, typically for a week at a time, to

consider:

• petaflops applications - what problems appear to require 1 Pflop/s or beyond for important benefits

not achievable at smaller scales?

• petafiops architectures -- how can balanced systems that store, transfer, and process the data of

petaflops applications be supported with conceivable technologies?

• petaflops software -- how can the gap between the complex hardware and the application community

bc spanned with tools that automate program preparation and execution?

• petaflops algorithms -- how much concurrency can be exposed at various levels in a computational

model and what fundamental requirements on capacity, bandwidth, latency, and processing arise

from the underlying physics and mathematics?

but we do not distinguish between "petaflops" and "petaflop/s" when using the term as an adjective of scale. "Petaflops" will
also be used in its general adjectival form to include the term "peta-ops," reflecting requirements to perform integer and logical

computation at comparable rates, independently of or (often) in conjunction with floating point computation.



Themaincontentsof this report were originally created for, and have been informed by, the most recent

of these meetings, the Petaflops Algorithms workshop in Williamsburg, VA, April 13-18, 1997. Fifty-five

participants from federal agencies, universities, computer vendors, and other private computational orga-

nizations attempted to address the algorithmic research questions presented by potential of "affordable"

petaflops systems by the year 2010.

The principal findings and recommendations have been outlined in [2], which concludes that petaflops

computing is algorithmically feasible, in that at least some of today's key algorithms appear to be scalable

to petaflops. Issues of interest to algorithmicists include the following, many of which are shared with the

software and hardware communities:

• Concurrency

• Data locality

• Latency and synchronization

• Floating point accuracy (extended wordlength)

• Dynamic (data-adaptive) redistribution of workload

• Detailed performance analysis

• Algorithm improvement metrics

• New languages and constructs

• Role of numerical libraries

• Algorithmic adaptation to hardware failure

Participants made preliminary assessments of algorithm scalability, from as many diverse areas of high-

performance computing as were represented, and applied a "triage"-style categorization: Class 1 - appearing

to be scalable to petafiops systems, given appropriate effort; Class 2 - appearing scalable, provided certain

significant research challenges are overcome; and Class 3 - appearing to possess major impediments to

scalability, from our present perspective.

Many core algorithms from scientific computing were placed in Class 1 (scalable with appropriate effort),

including: dense linear algebra algorithms; FFT algorithms (given sufficient global bandwidth); PDE solvers,

based on static grids, including explicit and implicit schemes; sparse symmetric direct solvers, including

positive definite and indefinite cases; sparse iterative solvers (given parallelizable preconditioners); "tree-

code" algorithms for n-body problems and multipole or multiresolution methods; Monte Carlo algorithms

for quantum chromodynamics; radiation transport algorithms; and certain highly concurrent classified (in

the sense of national security) algorithms with a priori specifiable memory accesses.

Class 2 algorithms (scalable if significant challenges overcome) included a category of principal interest

to CFD practitioners -- namely, dynamic unstructured grid methods, including mesh generation, mesh

adaptation and load balancing -- along with several others: molecular dynamics algorithms; interior point-

based linear programming methods; data mining, including associativity, clustering, and similarity search;

sampling-based optimization, search, and genetic algorithms; branch and bound search algorithms; boundary

element algorithms; symbolic algorithms, including Grhbner basis methods; discrete event simulation; certain

further classified algorithms involving random memory accesses.

Into Class 3 (possessing major impediments to scalability) the participants placed: sparse unsymmet-

tic Gaussian elimination, theorem-proving algorithms; sparse simplex linear programming algorithms; and

integer relation and integer programming algorithms.

From these lists one may abstract the following contraindications for petafiops:

• Data dependencies that are random in characterization and determinable only at runtime (input-



dependentdependencies);
• Insufficientspeculativeconcurrency;
• Frequentuncoverableglobalsynchronization;
• Multiphasealgorithmicstructurewithdisparatemappingsof datato memorieswithinalternating

load-balancedphases;and
• Requirementof fastaccessto hugedatasetsbyall processors.

Computationalfluiddynamics,aspracticedatthecontemporarystate-of-the-artforproblemswithcomplex
physics,issometimescharacterizedbythislist. Adaptivemethodscannotbestaticallybalancedandmapped
acrossprocessors,makingincrementaldynamicbalancingandmappingnecessary,togetherwithperformance
monitoringandperformanceestimationto makecost-benefitanalyses.Hybridparticle-fieldtechniquesoften
haveunbalancedsequentialphaseswheneithertheparticleor thefieldcomputationisgivenpriorityover
theotherin datadistribution.Lookuptablesfor complexstateequations,constitutiverelations,andcross-
sectionsorreactioncoefficientsareoftentoolargeto replicateoneachprocessor,but toononlocallyaccessed
to partitionwithoutsacrificeof efficiency.

In additiontothesereadilyapparentcontraindications,thereisanothercomplementarypair,ofrelevance
to fluiddynamics simulations:

• Work requirements that scale faster than than M 4/3, where M is the main memory capacity; and

• Memory requirements that scale faster than W 3/4, where W is the (arithmetic) work complexity.

This constraint between memory and work scaling (or, alternatively, between memory and execution time

scaling) is not likely to be as painful an issue for PDF_,-based computations as it may be for some others,

since it reflects an architectural decision that is largely influenced to accommodate stencil-type computations

on three-dimensional space-time grids (as we discuss further below). It is however, a new constraint, as

applied in a two-sided manner. CFD practitioners are accustomed to either a memory or a time constraint,

which they play up against - running the largest job that fits in memory for as much time as required on a

dedicated system or running a job up against a temporal deadline with as much resolution as can be afforded.

A tightly-coupled petaflops-capable system will be delicately balanced in its hardware configuration for a

specific memory/processing rate model. Such systems will be too rare and too expensive to turn over in a

dedicated fashion for an indefinite amount of time. They will also be too expensive to use without employing

the full amount of memory most of the time. Algorithms that can trade space for time (such as methods

that can vary discretization order, and thus the number of operations per grid vertex) will therefore extend

more gracefully to an architecturally and economically constrained machine than algorithms that can only

be run at a specific operation-count-to-memory ratio.

1.3. Technology Outlook. We conclude our introduction with a glimpse at a baseline COTS petaflops

machine, and at a couple of nontraditional architectural directions. As we quote the educated guesses of

others in this section, we begin with a caveat from Yogi Berra, philosopher in Baseball's Hall of Fame:

"P_Aiction is hard. Especially the future... "

In its projections for the year 2007 (the target year of its current ten-year window, as of this writing)

the Semiconductor Industry Association (SIA) anticipates that individual clock rates will continue their

historically gratifying ascent as far as approximately 2GHz and then level off. This implies that at least

500,000-fold instruction concurrency is required (to achieve a product of 1015 operations per second), some

of which will be found at the subprocessor level. Based on this number, and informed by other technology

extrapolations, Stevens [24] has projected a COTS design. He envisions a 2,000-node system, with 32

processors per node, totaling 64,000 processors. This leaves approximately 8-fold concurrency to be found



withinaprocessor'sownpipelinedinstructionstream(e.g.,throughmultiplefunctionalunits).With 65GB
of sharedmemorypernode,thesystemwouldhaveanaggregateof 130TB. Approximately80,000disks
(failingat therateofapproximatelyoneeveryhour)wouldbackthismemory.Theoverallmemoryhierarchy
(fromprocessorregistersto disks)wouldhave8 levels.The2 GHz-clockmultifunctionalunit processors
wouldbefedbyapproximately240GB/sof loads and 120 GB/s stores apiece (assuming dominantly triadic

operations, a _ bop c). This requires 180 data Bytes per cycle in and out of Level-1 cache, which would

take up about 70% of an overall 2,048-bit wide path from L1 to CPU. Extrapolating from present pricing

trends and practices, such a machine would cost approximately $32M for the CPUs and $174M for the overall

system. Power consumption would be 11.5 MW and the annual power bill would be approximately $12M.

Sterling has led a design team that is looking well beyond COTS technology. The Hybrid Technology,

Multi-threaded (HTMT) architecture [25] is looking towards a 100 GHz clock from quantum logic processors.

At this rate, there will be a latency to DRAM of approximately 10,000 clocks. The 7-layer memory hierarchy

of HTMT traverses the temperature spectrum from non-uniform random access (NURA) registers, cryogenic

RAM (CRAM), at liquid helium temperatures, SRAM at liquid nitrogen temperatures, conventional DRAM,

and high density holographic RAM, (HRAM), backed by disk. Programmer-specified "thread affinity" will

reduce data hazards.

The Processor-in-Memory (PIM) design of Kogge et al. [20] will feature 100 TB of memory in 10,000

to 20,000 chips, each of which contains about 50 embedded "CPUs." The memory system will be like a live

file with filters attached.

All designs are subject to the so-called "Tyranny of DRAM," which states that bandwidth between

memory and the processors must be proportional to processor consumption of operands, even if latency is

covered (through prefetching or some other technique). Many kernels, like the DAXPY and the FFT, do

work that is a small constant (or at most a logarithmic) multiple of the size of the data set. The tyranny

implies that progressively remote and slower levels of the memory system must provide proportionally wider

pathways of data towards the CPU, so that the bandwidth product can be maintained during computational

phases that cycle through the entire data set and do little work with each element.

2. Partial Differential Equation Archetypes and Parallel Complexity. Partial differential equa-

tions come in a wide variety, which explains why we have national laboratories instead of general purpose

PDE libraries. Evolution equations come in time-hyperbolic and time-parabolic flavors, and equilibrium

equations come in elliptic and spatially hyperbolic or parabolic flavors. Generally, hyperbolic equations are

challenging to discretize since they support discontinuities, but easy to solve when addressed in character-

istic form. Conversely, elliptic equations are easy to discretize, but challenging to solve, since their Green's

functions are global: the solution at each point depends upon the data at all other points. The algorithms

naturally employed for "pure" problems of these types vary considerably. CFD spans all of these regimes.

Its problems can be of mixed type, varying by region, or of mixed type by virtue of being multicomponent in

a single region (e.g., a parabolic system with an elliptic constraint). In a prospective discussion such as this

one, we cannot afford to be algorithmically comprehensive, and fortunately, we do not need to be in order

to accomplish some computational complexity estimates of generic value, since PDE computations have a

great deal of complexity regularity within their algorithmic variety, due to their field nature. The resource

requirements of a PDE problem can usually be characterized by the following parameters, for which typical

values are suggested for problems in the ASCI class:

• N_, spatial grid points (104 109)

,, Nt, temporal grid points (1 ... )



• No, components per point (1-102)

• Na, auxiliary storage per point (0-25)

• Ns, grid points in "stencil" (7-30)

In terms of these parameters, typical memory requirements would be some small number of copies of the fields

(successive iterates, overwritten in a shifted or moving-windowed manner) together with a copy of the current

Jacobian: N_. (No + Na) + Nx" N2c • Ns. (We assume with the N 2 term in the Jacobian that all components

depend upon all other components). The work for an explicit code, or for an implicit code in which the

linear system is solved through a sparse iterative means, is a small multiple of: N_ • N_ • (Na + N 2 • Ns).

For equilibrium problems solved by "good" implicit methods, work W scales slightly superlinearly in

the problem size (or main memory M); hence the Amdahl-Case Rule applies: M _ W. For evolutionary

problems, work scales with with problem size times the number of timesteps. CFL-type arguments place

the latter on the order of the resolution of each spatial dimension. For 3D problems, therefore, M cx Wa/4,

which leads to the conventional petafiops "memory-thin" scaling rule. The actual constant of proportionality

between M and W can be adjusted over a very wide range by both discretization order (high-order implies

more work per point and per memory transfer) and by algorithmic tuning. If frequent time frames are to

be captured, other resources -- disk capacity and I/O rates - must both scale linearly with W. This is

a more stringent scaling than for memory. For reasons of scope, we do not further address the scaling of

peripherals; however, we note that significant research remains to be done with archiving data and I/O to

support petaflops computing.

2.1. PDE Archetypes and Software Toolchain. The Computational Archetypes project at Caltech

[9] has identified PDE archetypes according to the following classification:

• Local mesh computations

- Concurrent

• Explicit update schemes, diagonal relaxation schemes

• Sparse matrix-vector multiplications

- Sequential

• Triangular relaxation schemes

• Sparse approximate factorization schemes

• Global dimensionally-split computations

- spectral schemes

- ADI-like schemes

• Direct linear algebraic computations

- Gaussian elimination in various orderings

With due respect to the importance of the latter, we concentrate on the prime archetypes for parallel CFD:

concurrent local mesh computations, explicit and iterative implicit.

Before confining our attention to a few quantitative aspects of the solution algorithm, we note that

solvers are just one link in a "toolchaln" [lg] for PDE computations worth doing at petaflops scales. This

toolchain involves:

• Geometric modeling and grid generation

• Discretization (and automated code generation)

• Error estimation and adaptive refinement (h- and/or p-type)

• Task assignment

- Domain partitioning



- Subdomain-to-processormapping
• Solution

- Gridandoperator"coarsening"
- Automatedor interactivesteering

• Visualization,postprocessing,andapplicationinterfacing
• Parallelperformanceanalysis

Thetoolchainmetaphorisusefulin remindingthat thesolveris notall thereis to a parallelcomputation,
andmaynotbethemostdifficultpart.Furthermore,thedifficultyofonelink maybeaffectedbydecisions
in another,e.g.,a solvermayhaveto workharderin conjunctionwitha poorgridgenerator.Theoverall
outcomeofacomputationmaybelimitedbyanyweaklink,makingit difficultto attachrelativemeritsto
individualcomponents.Thetoolchainmetaphorispossiblymisleadingin that notall linksareimportantin
all problems,andnotall importantrelationshipsarebetweenlinksadjacentin list.

Wemakeafewadditionalremarksonthetoolchain,abstractingCFD-relevantremarksfrom[19].Soft-
warecomponentsofthechaintendto bemodular,withwell-definedinterfaces,becauseof bothgooddesign
principlesandtheimpossibilityofanyoneindividualor teambeingexpertin all components.A fewfull,
verticallyintegratedparalleltoolchainenvironmentsexisttoday.Amdahl's"rake"eventuallyforcesparal-
lelizationofallcomponents;certainly,at least,forpetaflops.Asonetoolisperfected,theparallelbottleneck
shiftsto another.Significantsharingandreuseof componentsoccurshorizontally(acrossgroups)at the
"low"endof thetoolchain.Forinstancegrid generatorsandpartitionersareeasyto sharesincethey in-
terfaceto therestof theenvironmentthroughintermediatediskfiles.At higherlevels,thecompatibilityof
innerdatastructuresbecomesanissue,whichlimitssharing.Somereuseof softwarebetweencomponents
occursvertically,suchasbetweenmeshgenerationandimprovementalgorithms,andbetweentheseandthe
solver.Thoughdata-structure-specific,commonoperationsaresufficientlygenericto becomecandidatesfor
verticalsoftwarereusewithinagroup(e.g.,intermeshtransferoperators,errorestimators,andsolversfor
errorestimatorsandfor actualsolutionupdates).Theparallelscalabilityrequirementdiscouragestheuse
of graphalgorithmsthat makefrequentuseofglobalinformation,suchaseigenvectors.Instead,heavyuse
ismadeofmaximalindependentsets,whichcanbeconstructedprimarilybyalocal,greedyalgorithm,with
localmediationat subdomaininterfaces.Treesaregenerallyavoidedasprimarydatastructuresin important
inner-loopnearest-neighboroperationsofPDE-basedcodes.Crucialtrade-offsexistbetweentimeto access
grid andgeomctryinformationandtotalmemoryusage;redundantdatastructurescanreduceindirection
at thepriceofextrastorage.

2.2. Algorithms for PDEs. AnexplicitPDEsolutionalgorithmhasthefollowingalgebraicstructure
in movingfromiterateg - 1 to iterate g:

u_ = u_-I _ At_ . f(u_-l),

or, for higher temporal order schemes, a more general, fully known right-hand side:

uI= F(uI-I,u_-2,...).

Let N be the discretedimension of a 3D problem and P the number of processors. Assume that the

domain isof unit aspect ratioso that the number of degrees of freedom along an edge isN I/3,and that

the subdomain-to-processorassignment isisotropic,as well.The concurrency ispointwise,O(N). Since the

stencilislocalized,the communication-to-computation ratioenjoys surface-to-volumescaling:(P((_)-I/3).

The communication range isnearest-neighbor,except fortimestep selection,which typicallyinvolvesa global



CFL stability check. The synchronization frequency is therefore once per timestep, O ((N)-I). Storage

pcr point is low -- just a small multiple of N, itself. The data locality in the stencil update operations

can be exploited both "horizontally" (across processors) and "vertically" (in cache). Load balancing is

a straightforward matter of equipartitioning gridpoints while cutting the minimal number of edges, for

static quasi-uniform meshes. Load balance becomes nontrivial when grid adaptivity is combined with the

synchronization step of timestep selection.

The discrete framework for an implicit PDE solution algorithm has the form:

U £ U _ - 1

At----/ + f(u _) _ At_,

with At t --* _ as e --* c¢_.We assume that pseudo-timestepping is used to advance towards a steady state. An

implicit method may also be time-accurate, which generally leads to an easier problem than the steady-state

problem, since the Jacobian matrix for the left-hand side is more diagonally dominant when the timestep

is small. The sequence of nonlinear problems, g = 1, 2,..., is solved with an inexact Newton method. The

resulting Jacobian systems for the Newton corrections are solved with a Krylov method, relying only on

matrix-veCtor multiplications, so the stencil-based sparsity is not destroyed by fill-in. The Krylov method

needs to be preconditioned for acceptable inner iteration convergence rates, and the preconditioning is the

"make-or-break" aspect of an implicit code. The other phases parallelize well already, being made up of

DAXPYs, DDOTs, and sparse MATVECs.

The job of the preconditioner is to approximate the action of the Jacobian inverse in a way that does

not make it the dominant consumer of memory or cycles in the overall algorithm. The true inverse A -1 is

usually dense, reflecting the global Green's function of the continuous PDE operator approximated by A.

Given Ax = b, we want B approximating A -1 and a rescaled system BAx = Bb (left preconditioning) or

ABy = b, x = By (right preconditioning). Though formally expressible as a matrix, the preconditioner

is usually implemented as a vector-in, vector-out subroutine. A good preconditioner saves both time and

space by permitting fewer iterations in the innermost loop and smaller storage for the Krylov subspace. An

Additive Schwarz preconditioner [6] accomplishes this in a localized manner, with an approximate solve in

each subdomain of a partitioning of the global PDE domain. Optimal Schwarz methods also require solution

of a global problem of small discrete dimension. Applying a preconditioner in an Additive Schwarz manner

increases flop rates over a global preconditioner, since the smaller subdomain blocks maintain better cache

residency.

Newton Krylov Schwarz

The pioneers of NKS methods.



Combining a Schwarz preconditioner with a Krylov iteration method inside an inexact Newton method

leads to a recently assembled synergistic parallelizable nonlinear boundary value problem solver with a

classical name: Newton-Krylov-Schwarz (NKS).

When nested within a pseudo-transient continuation scheme to globalize the Newton method [18], the

implicit framework has four levels:

do 1 = I, n_time

SELECT TIME-STEP

do k = i, n_Newton

compute nonlinear residual and Jacobian

do j = I, n_Krylov

do i = i, n_Precon

solve subdomain problems concurrently

enddo

perform Jacobian-vector product

ENFORCE KRYLOV BASIS C0NDITIONS

update optimal coefficients

CHECK LINEAR CONVERGENCE

enddo

perform DAXPY update

CHECK NONLINEAR CONVERGENCE

enddo

enddo

The operations written in uppercase customarily involve global synchronizations.

The concurrency is pointwise, O(N), in most algorithmic phases but only subdomainwise, O(P), in the

preconditioner phase. The communication-to-computation ratio is still mainly surface-to-volume, O (( N )- 1/3).

Communication is still mainly nearest-neighbor in range, but convergence checking, orthogonalization/conjugation

steps in the Krylov method, and the optional global problems add nonlocal communication. The synchro-

nization frequency is often more than once per mesh-sweep, up to the grylov dimension (K), 0 (K(N)-I).

Similarly, storage per point is higher by a factor of O(K). Locality can still be fully exploited horizontally

and vertically, and load balance is still straightforward for any static mesh.

2.3. Parallel Complexity Analysis. Given complexity estimates of the leading terms of:

• the concurrent computation,

• the communication-to-computation ratio, and

• the synchronization frequency,

and a model of the architecture including:

• internode communication (network topology and protocol reflecting horizontal memory structure),

and

• on-node computation (effective performance parameters including vertical memory structure),

one can formulate optimal concurrency and optimal execution time estimates for parallel PDE computations,

on per-iteration basis or overall (by taking into account any granularity dependence in the convergence rate).

For an algebraically simple example that is sufficient to elucidate the main issues in algorithm design,

we consider a 2D stencil-based PDE simulation and construct a model for its parallel performance based on

computation and communication costs. The basic parameters are as follows:



• n grid points in each direction, total memory N = O(n2),

• p processors in each direction, total processors P = p2

• memory per node requirements O(n2/p2),

• execution time per iteration An2/p 2 (A includes factors like number of components at each point,

number of points in stencil, number of auxiliary arrays, amount of subdomain overlap),

• n/p grid points on a side of a single processor's subdomain,

• neighbor communication per iteration (neglecting latency) Bn/p, and

• cost of an individual reduction per iteration (assumed to be logarithmic in p with the frequency of

global reductions included in the coefficient) C logp.

A, B, and C are all expressed in the same dimensionless units, for instance, multiples of the scalar floating

point multiply-add.

Putting the components together, the total wall-clock time per iteration is

n2 B_nT(n,p) = A--¢ + + Clogp.
p- P

The first two terms fall as p increases; the last term rises slowly. An optimal p is found where _ = O, or

-2A_ -B_ Cp_ + --p = O,

or

"[ ]Pore= _-_ I + V/I +8AC/B 2 .n.

Observe that p can usefully grow proportionally to n without limitation. The larger the problem size, the

more processors that can be employed with the effect of reducing the execution time. In this limited sense,

stencil-based PDE computations are scalable to arbitrary problem sizes and numbers of processors. The

optimal running time is

A B

T(n,popt(n)) = -p5 + --p + Clog(pn),

where p = _ [1 + V/1 + 8AC/B2]. This optimal time is not constant as the problem size (and number of

processors) increases, but it degrades only logarithmically.

To simplify, consider the limit of infinite bandwidth so that the (asynchronous) nearest-neighbor ex-

changes take no time. Then,

pop_= v_lC" n,

and

This simple analysis is on a per-iteration basis; a fuller analysis would multiply tMs cost by an iteration

count estimate that generally depends upon n and p. We observe that although an algorithm made up of

this mix of operations is formally scalable, the number of processors amongst which the problem should be

divided varies inversely with C, the coefficient of the global synchronization term, and running time varies

proportionally. Recall that the main difference in complexity per iteration between explicit and implicit
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methodsin thiscontextis themuchgreaterfrequencyof synchronizationfor implicitmethods.Oneof the
mainbenefitsprovidedin returnfor thissynchronizationis freedomfromCFLlimitations,andhencethe
prospectof aniterationcountthat isnotconstrainedbytheresolutionof thegrid.

Thesynchronizationcostismadeof twoparts:thehardwareandsoftwarelatcncyof accessingremote
datawhenthedatais, in fact, ready,andthesynchronizationdelaywhenthe datais not ready.Since
theyaredifficultto distinguishin practice,welumpthemtogetherundertheterm"latency"andconsider
strategiesfor latencytolerance.

2.4. Latency Tolerance.Fromanarchitect'sperspective[10],therearetwoclassesofstrategiesfor
toleratinglatency:amortization(blockdatatransfers)andhidingorcovering(precommunication,proceeding
pastanoutstandingcommunicationin thesamethread,andmultithreading).Therequirementsfortolerating
latencyareexcessconcurrencyin theprogram(beyondthenumberof processorsbeingused)andexcess
capacityin thememoryandcommunicationarchitecture,in orderto stageoperandsneartheprocessors.

Any architecturalstrategyhasanalgorithmiccounterpart,whichcanbe expressedin a sufficiently
richhigh-levellanguage.Forinstance,prefetchingis partiallyunderprogrammercontrolin somerecent
commerciallyavailablelanguageextensions.In addition,however,algorithmicistshavea uniquestrategy,
notavailableto architectsbydefinition:reformulationoftheproblemto createconcurrency.Algorithmicists
maynotethatnotallnonzerosarecreatedequal,andcancreateadditionalconcurrencybyneglectingnonzero
couplingsin a systemmatrixwhentheystandin theway.Algorithmicistsmayalsoaccepta (sufficiently
rapidlyconverging)outeriterationthat restoresthecouplingin a lesssynchronousway,if it improvesthe
concurrencyof theiterationbody.Thereductionin thecostperiterationmustmorethanoffsetthecost
oftherestorativeouteriterations.An understandingoftheconvergencebehavioroftheproblem,especially
thedependenceof theconvergencebehavioronspecialexploitablestructure,suchasheterogeneity(region-
dependentvariation)andanisotropy(direction-dependentvariation),is requiredin orderto intelligently
suppressnonzerodatadependencies.Webrieflymentionsomeideasfor latency-tolerantpreconditioners,
latency-tolerantaccelerators,andlatency-tolerantformulations.

TheAdditiveSchwarzmethod(ASM)namedaboveastheinnermostcomponentof the implicitNKS
methodisaperfectillustrationoflatency-tolerantpreconditioner.Wetakeacloserlookat theconstruction
of thismethod.

TheoperatorB is formed out of (approximate) local solves on overlapping subdomains. The figure below

shows a domain _ decomposed into nine subdomains _, which are extended into overlapping subdomains

_ that are cut off at the original boundary. The fine mesh spacing is indicated in one of the overlapping

subdomains. This example is for a matching discretization in the overlapping subdomains, but nonmatching

discretizations can be accommodated.
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Let P_ and R/T be Boolean gather and scatter operations, mapping between a global vector discretized

on the fine mesh and its i th subdomain support, and let

B -- Z RT/_-IR/"
i

The concurrency thus created is proportional to the number of subdomains. Part of the action of the R, is

indicated schematically in the figure below. The bold right segment of f_i and the bold left segment of _j

are the same physical points. The overlapping subdomains are shown pulled apart, and the padding of each

with interior data of the other is indicated by the arrows and dashed rectangles. (The width of the overlap

is exaggerated for clarity in this illustration.)
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The amount of overlap obviously determines the amount of communication and the amount of redundant

computation (on non-owned, buffered points).

A two-level form of Additive Schwarz is provably optimal in convergence rate for some problems [23],

but requires an exact solve on a coarsened grid. Convergence theorems for scalar 3D elliptically dominated
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systems may be summarized as follows, where I estimates the number of iterations as a function of problem

size N and number of subdomains (and processors) P:

• No preconditioning: I c< N1/3

• Zero-overlap Schwarz preconditioning: I o¢ (NP) 1/6

• Generous-overlap Schwarz preconditioning: I o( (p)1/3

• Two-level, generous overlap Schwarz preconditioning: I -- O(1)

The PETSc library [3, 4] includes portable parallel parameterized implementations of Schwarz precondition-

ers, including the new, more communication efficient, Restricted Additive Schwarz (RAS) method [8].

Another example of a latency-tolerant preconditioner is the form of the Sparse Approximate Inverse

(SPAI) recently developed in [14]. Here B is formed in explicit, forward-multiply form by performing a

sparsity-constrained norm minimization of I lAB-I IIF. The minimization decouples into N independent least

squares problems, one for each row of B. An adaptively chosen sparsity pattern, such that IIAbk - ekll2 < e

leads to _(AB) _< V 1---_, where 5 o¢ Ne 2. e is chosen as a compromise between storage and convergence rate.

The requirement on the smallness of e appears pessimistic (in that B becomes denser as e becomes smaller),

but SPAI is worthwhile beyond the hypotheses of the theorem, just as Additive Schwarz is worthwhile with

overlaps much smaller than required by the theory for optimality.

The concurrency created by SPAI is pointwise, in both the construction and the application of B. A

parallel implementation of SPAI is described in [5]. (The next public release of PETSc will contain an

interface to this package.) The sparsity profiles of an original matrix A and its SPAI, with a comparable

number of differently positioned nonzeros are shown below (from [14]):

.001\-\\
°°°I "C\\
 001 \%,

looo[
0 500 1000

nz = 23094

0

200

400

600

800

1000

0

_, ,,_ ,..;,

5OO

nz = 26316

L.

1000

Modified forms of the classical Krylov accelerators of conjugate gradients (CG) and generalized minimal

residuals (GMRES) can provide latency-tolerant accelerators. Krylov methods find the best solution to

an N-dimensional problem in a K-dimensional Krylov space (K << N). Conventional Krylov methods

orthogonalize (or conjugate) at every step to build up a well conditioned Krylov basis and to update the

expansion coefficients of the solution in the enlarged basis. In infinite precision, this orthogonalization can be

delayed for many steps at a time and "made up" in one multicomponent global reduction [12], some options

for which are available in PETSc. In finite precision, delayed orthogonalization may be destabilizing, but for

the low-accuracy requirements of an inner loop of a Newton method it may be tolerable, since the basis is

flushed before it gets large. Furthermore, the requirement of performing all pairwise orthogonalizations may

be avoided by construction during part of the iteration if the bases are generated from sparse seed vectors

with sparse system matrices A. Many other tradeoffs of stability for reduced synchronization frequency have

yet to be carefully investigated on realistic problems. Petaflops scale CFD will require a systematic assault

on the synchronicity of Krylov basis generation.

The formulations of PDE algorithms, themselves may be made more latency-tolerant in ways that do
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not compromise the ultimate accuracy of the result, but only the minimal number of iterations required to

achieve it. Many synchronization steps in conventional algorithms (e.g., convergence tests, global timestep

selection) can be hidden by speculative computation of the next step based on a conservative prediction of

the outcome. Such conservative predictions (that an iteration has not converged, or that a timestep cannot

be increased) allow by-passing tests that would be recommended for minimal computational complexity if

communication were free; but their communication costs may not justify the resulting instant adaptation.

Much work in PDE codes with complex physical models is related to updating auxiliary quantities used in

Jacobian assembly, such as flop-intensive constitutive laws or communication-intensive table lookups. These

can be "lagged" to slightly stale (or very stale) values with latency savings and acceptable convergence rate

consequences.

Message-number versus message-volume trade-offs can be resolved in architecturally optimal ways, given

latency and bandwidth models.

Furthermore, a "neighbor-computes" paradigm may sometimes be better than an "owner-computes" in

cases in which the output of the computation is small but the inputs (residing on the neighbors) are large.

3. Case Study in the Parallel Port of an NKS-based CFD Code. Discussions of petaflops-

scale computing ring hollow if not accompanied by experiences on contemporary parallel platforms that

demonstrate that the currently provided technology has been absorbed. We therefore include in this report

some parallel performance results for a NASA unstructured grid CFD code that is used to study the high-lift,

low-speed behavior of aircraft in take-off and landing configurations. Our primary test case, possessing only

1.4 million degrees of freedom, is miniscule on the petaflops scale, but we will show scalability of algorithmic

convergence rate and per-iteration performance over a wide range of numbers of processors, which we have

cvery reason to believe can be extended as the hardware becomes available.

The demonstration code, FUN3D [1], is a tetrahedral vertex-centered unstructured grid code developed

by W. K. Anderson of the NASA Langley Research Center for compressible and incompressible Euler and

Navier-Stokes equations. FUN3D uses a control volume discretization with variable-order Roe schemes for

approximating the convective fluxes and a Galerkin discretization for the viscous terms. Our parallel experi-

ence with FUN3D is with the incompressible Euler subset thus far, but nothing in the solution algorithms or

software changes for the other cases. Of course, convergence rate will vary with conditioning, as determined

by Mach and Reynolds numbers and the correspondingly induced grid adaptivity. Furthermore, robustness

becomes more of an issue in problems admitting shocks or making use of turbulence models. The lack of

nonlinear robustness is a fact of life that is largely outside of the domain of parallel scalability. In fact, when

nonlinear robustness is restored in the usual manner, through pseudo-transient continuation, the condition-

ing of the linear inner iterations is enhanced, and parallel scalability may be improved. In some _nse, the

Euler code, with its smaller number of flops per point per iteration and its aggressive trajectory towards the

steady state limit may be a more, not less, severe test of scalability.

The solution algorithm we employ is pseudo-transient Newton-Krylov-Schwarz (_NKS), with point-

block ILU(0) on the subdomains for the action of ._-1 (in the customary Schwarz notation; see above). The

original code possesses a pseudo-transient Newton-Krylov solver already. Our reformulation of the global

point-block ILU(0) of the original FUN3D into the Schwarz framework of the PETSc version is the primary

source of additional concurrency. The timestep grows from an initial CFL of 10 towards infinity according

to the switched evolution/relaxation (SER) heuristic of Van Leer & Mulder [211. Our _NKS solver operates

in a matrix-free, split-discretization mode, whereby the Jacobian-vector MATVEC operations required by

the GMRES method are approximated by finite-differenced Fr@chet derivatives of the nonlinear residual
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vector.Theactionof theJacobianis thereforealways"fresh."However,thesubmatricesusedto construct
thepointoblockILU(0)factorson thesubdomainsaspartof theSchwarzpreconditioningarebasedona
lower-orderdiscretizationthantheoneusedin theresidualvector,itself. This is a commonapproachin
practicalcodes,andtherequisitedistinctionswithintheresidualandJacobiansubroutinecallingsequences
wereavailablealreadyin theFUN3Dlegacyversion.

ConversionofthelegacyFUN3DintothedistributedmemoryPETScversionwasbeguninOctober1996
andfirst demonstratedin March1997.Sincethen,it hasbeenundergoingcontinualenhancement,largely
with respectto single-nodeaspects,namelyblocking,variableinterlacing,andedge-reorderingfor higher
cacheefficiency.Theoriginalfive-month,part-timeeffortincluded:learningaboutFUN3Dandits mesh
preprocessor,learningtheMeTiSunstructuredgridpartitioningtool,addingandtestingnewfunctionality
in PETSc(whichhadheretoforebeenusedwith structuredgrid codes;see,e.g. [13]), and restructuring

FUN3D from a vector to a cache orientation. Porting a legacy unstructured code into the PETSc framework

would take considerably less time today. Approximately 3,300 of the original 14,400 lines (primarily in

FORTRAN77) of FUN3D are retained in the PETSc version. The retained lines are primarily SPMD "node

code" for flux and Jacobian evaluations, plus some file I/O routines. PETSc solvers replace the rest. Parallel

I/O and post-processing are challenges that remain.

3.1. Summary of Results on the Cray T3E and the IBM SPo We excerpt from a fuller report

to appear elsewhere a pair of tables for a 1.4-million degree-of-freedom problem converged to near machine

precision in approximately 6.5 minutes, using approximately 1600 global fine-grid flux balance operations (or

"work units" in the multigrid sense) on 128 processors of a T3E or 80 processors of an SP. Relative efficiencies

of 75% to 85% are obtained over this range The physical configuration is a three-dimensional ONERA M6

wing up against a symmetry plane. This configuration has been extensively studied by our colleagues at

NASA and ICASE, and throughout the international aerospace industry generally, as a standard case. Our

tetrahedral Euler grids were generated by D. Mavriplis of ICASE. The grid of the problem most thoroughly

reported on herein contains 357,900 vertices, which implies that a vector of four unknowns per vertex has

dimension 1,431,600. We also present some results for a problem eight times larger, containing approximately

11 million degrees of freedom. (We can run this largest case only on the largest configurations of processors,

which does not permit wide scalability studies at present.) We used a maximum Krylov dimension of 20

vectors per pseudo-timestep. The maximum CFL used in the SER pseudo-timestepping strategy is 10,000.

The pseudo-timestepping is a nontrivial feature of the algorithm, since the norm of the steady state residual

does not decrease monotonically in the largest grid case. (In practice, we might employ mesh sequencing

so that the largest grid case is initialized from the converged solution on a coarser grid. In the limit, such

sequencing permits the finer grid simulation to be initialized within the domain of convergence of Newton's

method.)

The first table, for the Cray T3E, shows a relative efficiency in going from the smallest processor number

for which the problem fits (16 nodes) to the largest available (128 nodes), of 85%. Each iteration represents

one pseudo-timestep, including one Newton correction, and up to 20 Schwarz-preconditioned GMRES steps.

Cray T3E Performance (357,900 vertices)
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procs T-_

16

24

32

4O

48

64

8O

96

128

exe

2587.95s 1.00

1792.34s 1.44

1262.01s 2.05

1043.55s 2.48

885.91s 2.92

662.06s 3.91

559.93s 4.62

491.40s 5.27

382.30s 6.77

spee_ rloveralZ

1.00

0.96

1.03

0.99

0.97

0.98

0.92

0.88

0.85

Convergence is defined as a relative reduction in the norm of the steady-state nonlinear residual of

the conservation laws by a factor of 10 -1°. The convergence rate typically degrades slightly as number

of processors is increased, due to introduction of increased concurrency in the preconditioner, which is

partition-dependent, in general. We briefly explain the efficiency metrics in the last three columns of the

tables.

Conflicting definitions of parallel efficiency abound, depending upon two choices:

• What scaling is to be used as the number of processors is varied?

- overall fixed-size problem

- varying size problem with fixed memory per processor

- varying size problem with fixed work per processor

• What form of the algorithm is to be used as number of processor is varied?

- reproduce the sequential arithmetic exactly

- adjust parameters to perform best on each given number of processors

In our implementations of NKS, we always adjust the subdomain blocking parameter to match the number

of processors, one subdomaln per processor; this causes the number of iterations to vary, especially since

our subdomain partitionings are not nested. The effect of the changing-strength preconditioner should be

examined independently of the general effect of parallel overhead, by considering separate algorithmic and

implementation efficiency factors.

The customary definition of relative efficiency in going from q to p processors (p > q) is

q. T(q)

_?(Plq) = P" T(p---_'

where T(p) is the overall execution time on p processors (directly measurable). Factoring T(p) into I(p), the

number of iterations, and C(p), thc average cost per iteration, the algorithmic efficiency is an indicator of

preconditioning quality (directly measurable):

,7o .(plq)= z(q-A)
I(p)'

Implementation efficiency is the remaining (inferred) factor:

O*,-,,pt(Plq) - q" C(q)
p. C(p)"

The second table, for the IBM SP 2, shows a relative efficiency of 75% in going from 8 to 80 nodes. The

2The configuration consists, more precisely, of 80 120MHz P2SC nodes with two 128 MB memory cards each connected by

a TB3 switch, and is available at Argonne National Lab.
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SPhas32-bitintegers,ratherthanthe64-bitintegersoftheT3E,sotheinteger-intensiveunstructured-grid
problemfitsonjust eightnodes.Theaveragepernodecomputationrateof theSPis about50%greater
thanthat oftheT3Efor thecurrentcache-optimizedversionof thecode.

IBM SP Performance (357,900 vertices)

procs

8

10

16

2O

32

4O

48

64

8O

exe speedup

2897.46s 1.00

2405.66s 1.20

1670.67s 1.73

1233.06s 2.35

797.46s 3.63

672.90s 4.31

569.94s 5.08

437.72s 6.62

386.83s 7.49

__overall

1.00

0.96

0.87

0.94

0.91

0.86

0.85

0.83

0.75

Algorithmic efficiency (ratio of iteration count of the less decomposed domain to the more decomposed

domain using the "best" algorithm for each processor granularity) is in excess of 90% over this range.

The main reason that the iteration count is only weakly dependent upon granularity is that the pseudo-

timestepping over the early part of the iteration provides some parabolicity.

Implementation efficiency is in excess of 82% over the experimental range, and near unit efficiency is

maintained over the early part of the range. Implementation efficiency is a balance of two opposing effects in

modern distributed memory architectures. It may improve slightly as processors are added, due to smaller

workingsets on each processor, with resulting better cache residency. Implementation efficiency ultimately

degrades as communication-to-computation ratio increases for a fixed-size problem after the benefits of cache

residency saturate.

The low (82%) implementation efficiency for the 80-processor SP can be accounted for almost completely

by communication overhead. PETSc provides detailed profiling capabilities that provide the communication

timings. The percentage of wallclock time spent in communication and synchronization on 80 processors of

the SP is:

• 6% on nearest-neighbor communication to set ghostpoint values needed in function and Jacobian

stencil computation (implemented using PETSc's vector scatter operations);

• 13% on globally synchronized reduction operations, further subdivided into:

- 5% on norms, required in convergence tests, in vector normalizations in GMRES, and in dif-

ferencing parameter selection in matrix-free MATVECs, and

- 8% on groups of inner products, required in the classical Gram-Schmidt orthogonahzation

in GMRES. (Note that the percentage lost to inner products would be much higher if the

modified Gram-Schmidt (recommended in [22] for numerical stability reasons but not needed

in this application) were used, since the modified version synchronizes on each individual inner

product.)

The effect on efficiency of the neighbor and global communications required in implicit methods for the

parallel solution of PDEs is clearly seen from this profiling. There is, of course, some concurrency available

in the scatter, norm, and inner product operations, so the overall efficiency deficit is not quite as large as

the percentage occupied by these three main contributors. However, reducing them would sharply increase

efficiency. We would expect an explicit code that was tuned to synchronize only rarely on timestep updates
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to obtain upwards of 90% fixed-size efficiency on the SP, instead of 82%.

The IBM SP has communications performance (in both bandwidth and latency) that is particularly poor

in relation to its excellent computational performance. However, on any parallel computer with thousands

of processors, algorithms requiring frequent global reductions will be of major concern.

Since we possess a sequence of unstructured Euler grids, we can perform a Gustafson-style scalability

study by varying the number of processors and the discrete problem dimension in proportion. We note that

the concept of Gustafson-style scalability does not extend perfectly cleanly to nonlinear PDEs, since added

reso]ution brings out added physics and (generally) poorer conditioning, which may cause a shift in the

"market basket" of kernel operations as the work in the nonlinear and linear phases varies. However, our

shockless Euler simulation is a reasonably clean setting for this study, if corrected for iteration count. The

table below shows three computations on the T3E over a range of 40 in problem and processor size, while

maintaining approximately 4500 vertices per processor.

Cray T3E Performance - Gustafson scaling

vert _ vert/proc _ exe exe/it

53,961 4497 265.72s 7.38s

9,428 4714 131.07s 6.89s

The good news in this experiment is contained in the final column, which shows the average time per

parallelized pseudo-time NKS outer iteration for problems with similarly sized local workingsets. Less than a

7% variation in performance occurs over a factor of nearly 40 in scale. Provided that synchronization latency

can be controlled as the number of processors is increased, via the ideas discussed in the previous section

and many others not yet invented, we expect that indefinite scaling is possible. We insert the caveat that

most petaflops-scale PDE computations will not be homogeneous, but will consist of interacting tasks with

different types of physics and algorithmics. Predictions of scalability are invariably problem-dependent when

such interactions need to be taken into account. Furthermore, most petaflops-scale PDE computations will

require dynamically adaptive gridding, and the adaptivity phase may not scale anywhere near as gracefully

as the solution phase exhibits here.

We have concentrated in this report on distributed aspects of high performance computing -- specifically

on potential limits to attainable computational rates coming from bottlenecks to concurrency exploitation.

From a processor perspective we have looked outward rather than inward. Since the aggregate computational

rate is a product of the concurrency and the rate at which computation occurs in a single active thread,

we should discuss the per-node performance of the code. On the 80-node IBM SP the sustained floating

point performance of the PDE solver (excluding the initial I/O and grid setup and excluding terminal I/O)

is 5.5 Gflop/s - or 69 Mflop/s per node in sustained parallel implicit mode. We claim that this is excellent

performance for a sparse matrix code and we know of only a handful of highly tuned CFD codes that are

claimed by others to execute with comparable per-node performance on the same hardware. Ncvertheless,

it is only 14% of the machine's peak performance. 3 It required considerable effort to get the per-node

performance this high. Compiling and running the FUN3D code -- which was written for vector machines,

not cache-based microprocessors -- out of the box on the same hardware, in serial, yields only 2% of peak

performance. Like most codes that are not tuned for cache locality, it runs closer to the speed of the memory

3Each 120MHz processor issues up to four floating point instructions per clock for a theoretical peak of 480 lVlflop/s per

processor. However, the particular configuration at Argonne is "thin", possessing only half of the maximum possible processor-

memory bandwidth.

18



system than to the speed of the processor.

On 8 processors the sustained performance of the cache-tuned FUN3D is about 16% percent of peak,

and extrapolating to one processor (by means of comparison of 1- and 8-processor performance on a smaller

problem), the sustained performance on one processor would be about 18_ of peak. We conclude from this

that improved per-node performance of sparse PDE applications on cache-based microprocessors represents

an opportunity for a factor of four or five, apart from replication of processors. The problem is a familiar

one with a welcome cause -- iterative solution algorithms are themselves highly efficient in terms of the total

number of operations performed per word of storage. However, algorithms, compilers, and runtime systems

must now be coordinated to minimize the number of times a word is transferred between cache and main

memory. The 18% extrapolated peak per-node performance is obtained after code optimizations including

blocking, geometric reordering (of gridpoints), algebraic reordering (field interlacing), and unrolling, which

are beyond the scope of this chapter and will be described in detail elsewhere.

The degradation of per-node performance with increasing numbers of processors (from 18% to 14% of

peak in going from 1 to 80 processors) stands in contrast to our early experiences with the code, before

the four optimizations just mentioned. Previously, we routinely obtained superunitary parallel efficiencies

powered by better cache locality due simply to smaller workingsets per node. A dubious (in the parallel

context) reward for cache optimization is that it improves the single-processor (large memory per node)

performance more than the multi-processor performance. However, the effect of the cache is so important

that it is not insightful to quote parallel efficiencies on anything but a cache-tuned code. Only after a code

is tuned for good cache performance, can the effect of surface-to-volume (communication-to-computation)

ratio be measured. For instance, on 64 SP processors, the case with 1.4 million degrees of freedom executed

at a sustained aggregate 4.9 Gflop/s, whereas the case with 11 million degrees of freedom executed at a

sustained aggregate rate of 5.5 Gflop/s.

We conclude this section by presenting fixed-size scalings for the finest grid case that we have run to

date on the IBM SP and on the Cray T3E. The 2.8 million vertex grid is nested in the 0.36 million vertex

grid used in the scalability studies above, by subdivision of each tetrahedron into eight. It is the largest grid

yet generated by our colleagues at NASA Langley for an implicit wing computation. Coordinate and index

data (including 18 million edges) occupies an 857 MByte file.

On the SP, the problem does not fit comfortably in core on less than 64 processors (to the nearest power

of 2); on the T3E, with its long integers, that number is 128 processors. Our SP (at Argonne) contains 80

processors and our T3E (at NERSC) contains 512, so scalings of 1.25 and 4.0 are possible, respectively.

Though a factor of 1.25 in processor number is a very inconclusive range over which to perform scaling

studies, we note a near-perfect speedup on the SP:

IBM SP Performance (2, 761,774 vertices)

procs I

64

80

On the T3E, we note a

itsI oxospeedup1 I, mp'I
163 9,160.91s 1.00 1.00 1.00 1.00

162 7,330.73s 1.25 1.01 0.99 1.00

speedup of 3.34 out of 4.0:

Cray T3E Performance (2,761,774 vertices)

Gflop/s

5.5

6.8

procs I

128

256

512

its I exe

164 6,048.37s

166 3,242.10s

171 1,811.13s

speedup[ "qcdg I rl_mp_

1.00 1.00 1.00

1.87 0.99 0.94

3.34 0.96 0.87

I _/overaU Gflop/s

1.00 8.5

0.93 16.6

0.83 32.1
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It is interestingto notethesourceof the degradation in going from 128 to 512 processors, since much

finer granularities will be required in Petaflops architectures. The maximum over all processors of the

time spent at global synchronization points (reductions - mostly inner products and norms) is 12% of

the maximum over all processors of the wall-clock execution time. This is almost entirely idle time arising

from load imbalance, not actual communication time, as demonstrated by inserting barriers before the

global reductions and noting that the resulting fraction of wall-clock time for global reductions drops below

1%. Closer examination of partitioning and profiling data shows that although the distribution of "owned"

vertices is nearly perfectly balanced, and with it the "useful" work, the distribution of ghosted nodes can

be very imbalanced, and with it, the overhead work and the local communication requirements. In other

words, the partitioning objective of minimizing total edges cut while equidistributing vertices does not., in

general, equidistribute the execution time between synchronization points, really due to the skew among the

processors in ghost vertex responsibilities. This example of the necessity of supporting multiple objectives

(or multiple constraints) in mesh partitioning has been communicated to the authors of major partitioning

packages, who have been hearing it from other sources, as well. We expect that a similar computation after

such higher level needs are accommodated in the partitioner will achieve close to 95% overall efficiency on

512 nodes.

As a point of humility, we note that the performance of this code on one of the best hardware platforms

available as of the date of writing is a factor of approximately 31,000 shy of 1 Petaflop/s.

4. Parallel Implementation Using PETSc. The parallelization paradigm we illustrate above in

approaching a legacy code is a compromise between the "compiler does all" and the "hand-coded by expert"

approaches. Wc employ the "Portable, Extensible Toolkit for Scientific Computing" (PETSc) [3, 4], a

library that attempts to handle, in a highly efficient way, through a uniform interface, the low-level details

of the distributed memory hierarchy. Examples of such details include striking the right balance between

buffering mcssages and minimizing buffer copies, overlapping communication and computation, organizing

node code for strong cache locality, preallocating memory in sizable chunks rather than incrementally, and

separating tasks into one-time and every-time subtasks using the inspector/executor paradigm. The benefits

to be gained from these and from other numerically neutral but architecturally sensitive techniques are so

significant that it is efficient in both the programmer-time and execution-time senses to express them in

general purpose code.

PETSc is a large and versatile package integrating distributed vectors, distributed matrices in several

sparse storage formats, Krylov subspace methods, preconditioners, and Newton-like nonlinear methods with

built-in trust region or linesearch strategies and continuation for robustness. It has been designed to provide

the numerical infrastructure for application codes involving the implicit numerical solution of PDEs, and it

sits atop MPI for portability to most parallel machines. The PETSc library is written in C, but may be

accessed from user codes written in C, FORTRAN, and C++. PETSc version 2, first released in June 1995, has

been downloaded thousands of times by users worldwide. PETSc has features relevant to computational fluid

dynamicists, including matrix-free Krylov methods, blocked forms of parallel preconditioners, and various

types of time-stepping.

A diagram of the calling tree of a typical k_NKS application appears below. The arrows represent calls

that cross the boundary between application-specific code and PETSc library code; all other details are

suppressed. The top-level user routine performs I/O related to initialization, restart, and post-processing

and calls PETSc subroutines to create data structures for vectors and matrices and to initiate the nonlinear

solver. PETSc calls user routines for function evaluations f(u) and (approximate) Jacobian evaluations if(u)
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atgiven state vectors. Auxiliary information required for the evaluation of f and f1(u) that is not carried as

part of u is communicated through PETSc via a user-defined "context" that encapsulates application-specific

data. (Such information typically includes dimensioning data, grid data, physical parameters, and quantities

that could be derived from the state u, but are most conveniently stored instead of recalculated, such as

constitutive quantities.)

f

Main Routine

A P'ica onI IFunc onIJa obioIPo't, Initialization Evaluation Evaluation Processing
% k -J

From our experience in writing and rewriting PDE codes for cache-based distributed memory machines,

we have the following recommendations, which will undoubtedly continue to be relevant as codes are written

in anticipation of an ultimate petaflops port.

• Replace global vector-based disk-striped data orderings (e.g., node colorings) with cache-based data

orderings (e.g., subblocks) at the outer level.

• Interlace unknown fields so that most rapid ordering is within a point, not between points.

• Use the most convenient naming (global or local) for each given task, maintaining translation capa-

bility:

- Physical boundary conditions rely on global names.

- Many interior operations can be carried over from the uniprocessor code to SPMD node code

by a simple "l-to-n" loop, with remapped entity relations (e.g., "vertices of edges", "edges of

cells").

• Apply memory conservation aggressively; consider recomputation in cache rather than storage in

memory.

• Micromanage storage based on knowledge of horizontal (e.g., network node) and vertical (e.g., cache)

boundaries.

These recommendations do not provide explicit recognition for parallelism at the multiple functional unit

level within a processor (and therefore within a cache). Within this level, vertex colorings can be applied to

provide more fine-grained concurrency in local stencil updates.

5. Nontraditional Sources of Concurrency. We step back briefly from our narrow focus on data

parallelism through spatial decomposition of a PDE grid to consider less traditional means of discovering

the million-fold concurrency that will be required for petaflops-scale computing.

Time-parallelism is a counterintuitive but demonstrably interesting source of concurrency, even in evolu-
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tionary,causalsimulations.A keyideaoftime-parallelismisthatnotalloftheworkthat goesintoproducing
aconvergedsolutionat timelevel_issequentiallycaptiveto aconvergedsolutionat timelevel_- 1. When
an iterativemethodis employed,differentcomponentsof theerrormayconvergeat differentstages,and
usefulworkmayconceivablybeginat levelebeforethesolutionat _- 1 iscompletelygloballyconverged.
This is particularlytrue in nonlinearproblems.Thedirection,volume,andgranularityof interprocessor
communicationsin temporalparallelismaredifferentfromthoseof spatialparallelism,asarethememory
scalings,sincemultipletime-framesoftheproblemproportionalto thetemporaryconcurrencymustbekept
in fastmemory.Forreasonsof scope,wedonot pursuethecorrespondingparallelcomplexitieshere,but
referto [16,17].

In additionto thedataparallelismwithinanindividualPDEanalysis,thereisdataparallelismbetween

PDE analyses when the analyses are evaluations of objective ffmctions or enforcements of state variable

constraints within a computational optimization context. Computational fluid dynamics is not about indi-

vidual large-scale analyses, done fast and well-resolved and "thrown over the wall." Both the results and

their sensitivities are desired. Often multiple forcings (right-hand sides) are available a priori, rather than

sequentially, which permits concurrent evaluation. Petaflops-scale computing for CFD will arrive in the

form of 100 quasi-independent analyses running on 10,000 1Gfiop/s processors earlier than in the form of 1

analysis running on 1,000,000 1Gflop/s processors.

Finally, we recall that computational fluid dynamics is not bound to a PDE formulation. The continuum

approach is convenient, but not fundamental. In a flat, global memory system, it is natural to solve Poisson

equations; in a hierarchical, distributed memory system, it is less natural. Nature is statistical, and enforces

elliptic constraints like incompressibility through fast local collision processes. Among major phenomena in

CFD only radiation is fundamentally "action at a distance." Lattice gas models have had a discouraging

history, perhaps because they are too highly quantized, requiring massive statistics, and because their fun-

damental operations cannot exploit floating point hardware. Lattice Boltzmann models, on the other hand,

seem highly promising. They are still quantized in space and time, but not in particle number, as quantized

particles are replaced with continuous probability distribution functions. Lattice Boltzmann models possess

ideal petaflops-scale concurrency properties: their two phases or relaxation and advection are alternatively

completely local and nearest-neighbor in nature. There is no inherent global synchronization, except for

assembling a visualization.

6. Summary Observations. The PDE-based algorithms for general purpose CFD simulations that

we use today will in theory 4 scale to petaflops, particularly as the equilibrium simulations that are prevalent

today go over to evolutionary simulations, with the superior linear conditioning properties of the latter in

implicit contexts. The pressure to find latency tolerant algorithms intensifies. Longer word lengths (e.g.,

128-bit floats) anticipated for petaflops-scale architectures, for more finely resolved - and typically worse-

conditioned problems, can assist in those forms of latency toleration, such as delayed orthogonalization,

that are destabilizing. Solution algorithms are, in some sense, the "easy" part of highly parallel comput-

ing, and thornier issues such as parallel I/O and parallel dynamic redistribution schemes may ultimately

determine the practical limits to scalability.

Summarizing the "state-of-the-art" of architectures and programming environments, as they affect par-

allel CFD, we believe that:

• Vector-awareness is out; cache-awareness is in; but vector-awareness will _turn in subtle ways having

4We are warned by Philosopher Berra: "In theory there is no difference between theory and practice. In practice, there is."
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to dowith highlymultiple-issueprocessors.
• ExceptfortheTeramachineandthepresentlyinstalledvectorbase,near-termlarge-scalecomputer

acquisitionswill bebasedoncommoditycache-basedprocessors.
• Drivenby ASCI,large-scalesystemswill beof distributed-sharedmemory(DSM)type:sharedin

localclustersonanode,with thenodesconnectedbyafastnetwork.
• Codeswrittenfor theMessagePassingInterface(MPI) areconsidered"legacy"alreadyandwill

thereforecontinueto besupportedin theDSMenvironment;MPI-2will gracefullyextendMPI to
effectiveuseof DSMandto parallelI/O.

• High-performanceFortran(HPF)andparallelcompilersarenot yet up to the performanceof
message-passingcodes,exceptin limitedsettingswith lots of structureto thememoryaddress-
ing [15].HybridHPF/MPIcodesarepossiblestepsalongtheevolutionaryprocess,withhigh-level
languagesautomatingtheexpressionandcompilerdetectionof structured-addressconcurrencyat
lowerlevelsofthePDEmodeling.

• Automatedsource-to-sourceparalleltranslators,suchastheUniversityof GreenwichCAPTools

project (which adds MPI calls to a sequential F77 input) may attain 80 95% of the benefits of the

best manual practice [27], but the result is limited to the concurrency extractable from the original

algorithm, like HPF. In many cases, the legacy algorithm should, itself, be replaced.

• Computational steering will be an important aspect of petaflops-scale simulations and will appear

in the form of interpreted scripts that control SPMD compiled executables.

With respect to algorithms, we believe that:

• Explicit time integration is a solved problem, except for dynamic mesh adaptivity.

• Implicit methods remain a major challenge, since:

- Today's algorithms leave something to be desired in convergence rate, and

- All "good" implicit algorithms have some global synchronization.

• Data parallelism from domain decomposition is unquestionably the main source of locality-preserving

concurrency, but optimal smoothers and preconditioners violate strict data locality.

• New forms of algorithmic latency tolerance must be found.

• Exotic methods should be considered at petaflops scales.

With respect to the interaction of algorithms with applications we believe that the ripest remaining

advances are interdisciplinary:

• Ordering, partitioning, and coarsening must adapt to coefficients (grid spacing and flow magnitude

and direction) for convergence rate improvement.

• Trade-offs between pseudo-time iteration, nonlinear iteration, linear iteration, and preconditioner

iteration must be understood and exploited.

With respect to the interaction of algorithms with architecture, we believe that:

• Algorithmicists must learn to think natively in parallel and avoid introducing unnecessary sequential

constraints.

• Algorithmicists should make choices that are informed by a detailed knowledge of the memory hier-

archy and interconnection network of their target architecture. It should be possible to develop very

portable software, but that software will have tuning parameters that are determined by hardware

thresholds.
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